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1. “PHILOSOPHICAL” OBSERVATIONS

Identification of an anvil electrification hazard
(through analysis of in-situ and radar observations)
is a “classic” binary classification problem. A train-
ing dataset determines hazard (presently defined as
E > 3 kV/m) and a candidate set of inputs (radar
observations) must be used to model a decision
surface between no-hazard/hazard conditions.

Any such classification problem can be conve-
niently generalized as a (potentially) multivariate,
categorical regression problem. The problem
requires three main design steps: (1) identification
of appropriate input parameters (subselection of
available observations, or transformation of them),
(2) selection of a regression model, (3) identifica-
tion of a decision criterion upon the outputs of the
regression model yielding a problem-appropriate
tradeoff between Probability of Detection [POD]
(loosely, safety) and False Alarm Ratio [FAR]
(loosely, cost). From the briefing given on the prob-
lem at hand, it appears that significant effort has
gone into steps (1) and (3), while by mutual consent
step (2) (model selection) has been limited to
simple, univariate threshold rules. This study seeks
to “flesh out” step 2 a bit to determine whether more
complicated models warrant consideration. It is
acknowledged that powerful operational drivers
nudge model selection towards single-input thresh-
old rules; however, it appears that this model
selection is not necessarily mandated.

1.1 SOME PERSONAL OPINIONS

On step (1): This is the most appropriate step for
expert physical knowledge to come into play, espe-
cially given that we do not have an explicit process
physics model relating radar inputs to electrification
outputs (we are not, e.g., fitting coefficients in a
population biology model where the dynamics are
assumed to be known). Since we lack full under-
standing of process physics, and our input
observations are not state variables themselves, the
problem is fundamentally empirical, and the best we

can do is guide ourselves towards an optimal solu-
tion by appropriate selection/transformation of the
inputs.

I’ll have a lot more to say on step (2) later.

On step (3): The current LCC review committee
structure seems to hand decision-making authority
on the POD/FAR tradeoff to the technical experts.
Since this is essentially a safety/cost tradeoff, this
is arguably a decision appropriate for management,
rather than technical experts, to make (if the two
overlap, all the better). This observation is espe-
cially relevant since the review team has already
identified the appropriate “tool” to provide the
necessary information on the POD/FAR tradeoft to
management: the Receiver Operating Characteristic
(ROC) curve, which parameterically displays POD
vs FAR for all possible decision thresholds in a fitted
model. This tool is (and should be) the primary
means of assessment of model performance.

1.2 CLASSIFICATION PRIMER

At the risk of being simplistic and pedantic, a quick
primer on classification may be useful to get us all
“speaking the same language”. The following illus-
tration has been helpful in illustrating classification
problems to students.

Consider a room. There exists a master plan for
this room to be filled with sand and rocks. A work-

Figure 1 : Conecptual problem.




(2b) A bivariate threshold rule.

(2c) A multivariate threshold (logical) rule, some-  (2d) A linear multivariate regression with linear
time known as a decision tree. basis functions. Also known as “discriminant
analysis”.

(2e) A linear multivariate regression with nonlin- (2f) A nonlinear multivariate regression with
ear basis functions. (e.g., e+ by2+ cz? ) “interaction” terms (e.g., axy + bxz + cyz)
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(2g) A nonlinear multivariate regression with
very “relaxed’ basis functions (e.g., a neural
network)
man is hired to lay out some sand and rocks accord-
ing to the master plan. He does not have enough
of either to fill the entire room, and then goes away.
(He may also be a bit sloppy in his adherence to the
plan). We are then given a sheet of plexiglass, and
asked to recreate the master plan by creating a
boundary between “sand areas” and “rock areas”.

To make this “concrete” (inadvertent pun): “sand
area” = “anvil electrification hazard”; “rock area”
= “anvil electrification safe”; the room axes corre-
spond to three possible input (radar) observations;
the plexiglass corresponds to a decision surface;
how we use it corresponds to our model selection;
where we slide it corresponds to POD/FAR trade-
off. Figure 1 illustrates the analogy.

Figure 2a illustrates a simple univariate threshold
rule, the model initially selected for this problem.
Attention is restricted to one possible input, and the
plexiglass is slid back and forth to determine and
optimum “threshold” (decision surface). Figure 2b
illustrates the case if we “cut” the plexiglass and
arrange the panels orthogonally: a bivariate thresh-
oldrule. This process can be extended indefinitely,
creating a “Lego world” (2c) in which the hazard
areas are increasingly “boxed in”. When auto-
mated, this type of model is also known as a
decision tree. It appears that the bulk of the
weather-related LCC fall into “Lego world”” model
form. (As an aside, a Lego world model with
slightly polished-off / rounded edges could be a
reasonably approximate illustration of a fuzzy logic
/ expert system model).

Carried to its extreme, it is apparent that “Lego
world” is simply a crude way of parameterizing
what is actually a smooth, complicated and likely
nonlinear boundary in the input parameter space. It
is natural to wonder if smoother parameterizations
exist. We could simply “tilt” the plexiglass (2d).
This would be a linear multivariate regression with
linear basis functions (the three radar inputs), and
is also known as “discriminant analysis”. We could
get fancy and bend or even flex the plexiglass,
though still be limited by its material properties; this
would be an example of linear multivariate regres-
sion with nonlinear basis functions (2¢) or nonlinear
multivariate regression (2f; if the plexiglass were
sufficiently “wobbly”). An important point here is
that the constraining material properties of the plex-
iglass (the mathematical form of the chosen
regression basis functions) has nothing to do with
the data distribution itself - again, by counterex-
ample, we are not fitting coefficients to a population
biology model. In our case, the choice of appro-
priate nonlinear basis functions or interaction terms
would be, at best, obscure.

A final and novel solution would be to get around
the annoying “material properties’ of the plexiglass
by melting it (2g). This would be a nonlinear multi-
variate regression with somewhat “arbitrary” or
“very flexible” basis functions. It is essentially what
a classification neural network does, and it would
be best to ignore any emotionally loaded reactions
against neural networks by simply thinking of them
as nonlinear regressions. The caution (as with any
nonlinear regression) is that we would not want to
melt the plexiglass “too much”, or it would overfit
the training data. Well-established bootstrapping
techniques exist to avoid this.

The illustration is intended to drive home several
basic points: (1) The decomposition of the problem
into defintion of inputs (room axes), model selec-
tion (what to do with the plexiglass) and decision
threshold selection (where to slide the plexiglass).
(2) The possible importance of considering multi-
variate models, especially when the data suggest
their importance, and when the inputs are readily
available. (3) The intuitive appeal of rule based
models rapidly vanishes if we consider multiple
inputs. Drawing a “wall” or “box” in one or two
dimensions is relatively easy. Drawing “boxes” in
many dimensions is not, and not necessarily intu-




itively superior to other models. [End, for now, rant
against decision tree models].

In this study, models of the form (2a), (2d) and (2g)
will be considered.

1.3 CAVEAT

Those with experience in statistics and classifica-
tion will already recognize that I’'m using somewhat
“fuzzy” language to describe these concepts, and
will observe that I’'m glossing over some formal
details in the analysis below. This is a “commu-
nication design tradeoff” to get the primary points
across (and a byproduct of generating a rapid turn-
arond analysis at a late stage in the game). I'm
aware of the formal deficiencies in my “fuzzy”
approach, but from experience with similar classi-
fication problems, do not believe that the primary
results would significantly change given a more
exhaustive treatment.

2. DATASET OBSERVATIONS

The dataset contains ~2600 observations at pixel
level, collected over a much smaller number of
cases. After rejection of bad data points (pixels
where a significant number of input parameters are
missing), this yields about 2600 WSR and 2000
NEXRAD observations. Ofthese, 15-16% (WSR)
and 12-13% (NEX) pass E>4 kV/m / E>3 kV/m
hazard criteria (the alternate 4 kV/m E hazard crite-
rion will be discussed below). The problem is thus
not necessarily “rare event”, but neither is it a
“balanced” classification problem (comparable
numbers of events and non-events). The dataset size
and rarity of hazards place fundamental limits on
the complexity of nonlinear models that could be
applied.

Several key parameters have significant numbers of
missing observations. This tends to occur most
often with the 0 dBZ-thresholded values, and
ACIntSum is a good example. For the preliminary
analysis, these data were “repaired” by filling them
in with the non-thresholded values (if available). In
the case of ACIntSum, if even the non-thresholded
value was missing, it was replaced by the TotSum,
which is supposed to be highly analogous and
spans the same dynamic range.

The input parameters are acknowledged to be
covarying and in some cases (by design) highly

collinear. (This is relevant in the interpretation of
weights in some of the multivariate linear models,
below).

Preliminary tests (using ROC curves as diagnostics)
suggested that O-thresholded inputs consistently
outperformed non-thresholded inputs, and the multi-
variate models considered below all use
0-thresholded inputs.

Preliminary tests also revealed a tendency for many
models” ROC curves to “fall apart” near POD~1.
Le., the “order of performance”, gauged by the over-
all model robustness for POD<1, got very confused
near POD~1. This has two immediate possible
implications: (1) the hazard criterion (E>3 kV/m)
may be too lenient, and the models have a difficult
time being “flexible” enogh to accommodate
marginal cases, or (2) a small number of truly noisy
or poor input or E observations cause the models
to “go through unnecessary contortions” (at the
expense of FAR) to accommodate this noise. [(1)
and (2) may also be related]. As a result:

(a) In addition to FAR @ POD =1 (nominally the
most “conservative” metric), FAR @ POD =0.995
and FAR @ POD = 0.990 are reported for each
model. I will argue that since these curves are
constructed from pixel data, we could even look at
FAR @ POD = ‘much lower’ as a model discrim-
inator, since the underlying problem is detection of
a hazardous anvil, rather than every hazardous
pixel, and even marginal or noisy pixels are likely
to have more “useful” pixels nearby. (As an aside;
with ~ 85 or so transects in the 1-yr dataset,
POD/FAR statistics on feature hazard detection
could easily be run). For now, I will err on the side
of caution and report only FAR @ POD = 0.990,
although the full ROC curves are presented for the
most promising models.

(b) Hazard has been alternatively defined (again
erring on the side of caution) as E > 4 kV/m. In
general, this yielded superior performance over an
E > 3 kV/m criterion. In the preliminary writeup,
results are only reported for the 4 kV/m hazard crite-
rion. Itis for the committee to decide whether that
redefinition is acceptable.

Finally, reviewing the initial writeups, it appears that
all models trained to date were trained on the entire
input dataset - no data were reserved for independ-
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ent validation.  For intercomparability I will
continue that approach, with the understanding that
all models discussed are likely overfitted and the
POD/FAR results thus overly optimistic. A “final”
solution should really reserve about 1/3 of the data
for independent assessment. The current approach
should be reasonable for coarse intercomparison
between models, although that is an assumption.

3. APPROACH

Three #ypes of models are considered here: (1)
univariate threshold rules, (2) multivariate linear
models, (3) multivariate nonlinear models. All have
been tested using a common framework, configur-
ing the models as neural networks. [A multivariate
categorial linear regression is simply a neural
network with no hidden layers, and a univariate
threshold rule can be shown to map to a univariate
linear regression, or neural network with one input
and no hidden layers]. The results should be
completely equivalent to (1) conventional rules, (2)
discriminant analysis, (3) neural networks. Each
model yields as an output (prediction) of the prob-
abilty P (from 0-1) that a set of input observations
yields a hazardous E-field. The ROC curves are
created by examining POD vs FAR as the decision
threshold for a hazard/no-hazard call based on the
output (predicted) probability is varied from 0-1.
Each curve represents a model; each point on the
curve represents a different decision threshold.
(Note that the outputs of a simple univariate thresh-
old rule can easily be transformed to probabilities
as well based upon the training sample, without
using my neural network implementation frame-
work. Having models yield probabilities as outputs
1s, in general, a cognitively useful thing to do...)

Three types of multivariate cases were run. A
“kitchen sink” neural network (all 30 inputs) was
trained to illustrate the “limits of predictability” in
the input data. Obviously, computation of 30 inputs
is operationally prohibitive; the “kitchen sink”
network is simply a (likely overfitted) best case
scenario or “tall pole”.

Recognizing that many of the 30 inputs are essen-
tially redundant, 9-input nonlinear and linear models
were tested using the O-thresholded variants of:
ColSuml, Thick11, Topl1, Basel 1, Avgl1, Fracl1,
SumAvgll, ACIntSuml11 and TotSuml1. This is
a more reasonable (though still likely operationally

infeasible) “tall pole” based on my guess at “most
physically distinct, interesting or relevant” inputs.

To test multivariate models that could be opera-
tionally feasible, 3-parameter linear models were
tested for every combination of 3 of these 9 inputs
(84 tests). A 3-parameter discriminant analysis
should be a viable model to implement.  For
comparison, a nonlinear neural network was trained
using the 3 inputs from the best 3-parameter linear
model.

Finally, univariate linear models (which reduce to
univariate threshold rules) were tested for the 9
unthresholded and 9 thresholded parameters
described above. This set thus includes some of
the tests already run by the committee, with the
difference that I am using E>4 kV/m as the hazard
criterion.

4. FINDINGS

A preliminary finding is that the WSR and NEX
results must be considered separately. Optimal
predictors differ significantly between the two input
sources, and the committee should resign itself to
selection of two different, radar-appropriate models.
The results are thus presented separately below. If
desired, I could attempt to train an optimal model
using the inputs from both radars as redundant data-
points, and we could explore what the performance
“hit” would be in seeking a “unified” model. I
suspect it will be significant. Note that this is differ-
ent than consideration of a multivariate model
using inputs from both sensors, which would almost
certainly improve performance at the expense of
operational complexity.

4.1 WSR RADAR INPUTS

Figure 3 presents the ROC curves (zoomed in to
POD =[0.85...1.00]) for: ‘interesting’ unthresholded
univariate rules (Avg*, ACIntSum®*), ‘interest-
ing’univariate O-thresholded rules (ACIntSum,
Avg), two of the best 3-parameter linear models
(ACIntSum, Frac, Base; ACIntSum, Frac, Top), a
3-parameter neural network (ACIntSum, Frac,
Base), 9-parameter linear and nonlinear models, and
the “kitchen sink” 30-parameter nonlinear model.
The inset numbers correspond to FAR @
POD=0.990, shown by the dashed line. Note that
the plot illustrates the point made earlier: the over-
all sequence of model “robustness” at POD <~ 0.98




WSR, E—Threshaold 4

100 T T T — ' B
005 Avgx [Lin] © 0.531 .
L ACIntSums=* [Lin] @ 0.432 ]
- L ACIntSum [Lin] @ 0.358 ]
T L Avg [Lin] : 0.329 ]
L ACIntSum, Frac, Top [Lin] @ 0.303
0.90 - ACImtSum, Frac, Base [Lin] @ 0.282 _|
L ACIntSum, Frac, Base [Nonlin] ¢ 0.281]
i Al 30 [NonLin] : 0.221 ]
0.85 i |H. I N R R S NN SRR RN AN S R
0.0 0.2 0.4 0.6 0.8 1.0

FAR

Figure 3: ROC curves (POD vs FAR as a function of decision threshold) for the “best” models
trained on WSR data with an E > 4 kV/m hazard threshold. Inset numbers show FAR (@ POD =
0.990 (dashed line). The full ensemble of model runs is shown in Table 1.
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“falls apart” near POD ~ 1, suggesting that very
good models can be found but only at the “expense”
of handling likely marginal or noisy data cases
poorly. I argue that this is only an “expense” in a
world where attention is inappropriately focused too
close to POD=1 (such a world may overemphasize
poor data or ambiguity in the hazard definition
itself).

Observe that at POD ~ 0.99, the models span a range
of about 0.35 False Alarm Ratio. The problem of
optimal model selection is thus a relevant one, and
the gains of considering even “slightly” multivari-
ate models should be weighed appropriately.

The entire ensemble of model runs is shown in Table
1. For each model, FAR @ POD=1.000, 0.995, and
0.990 is reported (the 3-parameter and 1-parameter
models are sorted by FAR @ POD=0.990). The
mean of these three FARSs is also shown as an addi-
tional metric. The “relevances” of the inputs for
each model are “painted” in the next 9 columns.
Some caveats: these relevances are of limited use
in the nonlinear models, and should be handled with
caution even in the linear models, as collinearity
among input parameters may be present.
Nonetheless, the “big picture” is highly instructive.

For the WSR radar, the best “reasonable” (i.e., 3-
parameter) models are essentially ACIntSum
(thresholded) + a quality metric (Frac) + some
nearly irrelevant 3rd input ... i.e., they are essentially
2-parameter models. This is fascinating in that it
recollects what I believe was a complaint about the
integrated parameters; that they were sensitive to
scan gaps, which is precisely what Frac is report-
ing. “Below” these models lie a number of models
with Avg as the primary input. Avg alone (thresh-
olded) is the 17th best “feasible” model, which itself
outperforms AClIntsum alone (much further down
the list). If I understand correctly, significant
discussion occurred about the scan gap issue. These
results illustrate that while “reject the input”
(univariate world) is certainly an option, “correct for
it” (multivariate world) is a much better option.

As an aside, note that ACIntSum (univariate) indeed
outperforms Avg when unthresholded, but the
reverse is true (and both are better) when using
thresholded inputs. In the context of “really good”
multivariate models shown here, the unthresholded
univariate models are ‘disastrous’. This should not

be surprising for two reaons: First, we can legiti-
mately physically question the microphysical
relevance of anvil layers with < 0 dBZ reflectivity.
Second, and more importantly, the minimum
detectable reflectivity of the WSR radar is highly
range-dependent. Unthresholded inputs thus do not
mean the same thing across the sampling domain.
This can add unnecessary “effective” noise to the
dataset. It also means that with limited training data,
our models may easily contain implicit bias based
on the circumstantial radar-relative locations of the
anvils studied... not a good thing. In this case, more
was not necessarily better.

Finally, note that the performance gains of signifi-
cantly more multivariate /inear models (“All9Lin")
are minimal for WSR data. The performance gains
of significantly more multivariate nonlinear models
are significant, but it would require significant
effort to (a) verify that these models are not over-
fitted and (b) implement a neural network module
in the operational system.

4.2 NEXRAD RADAR INPUTS

Before discussing Figure 4, a “big picture” compar-
ison of Tables 2 and 1 is in order. Clearly, the order
of “optimal” predictors differs signficantly between
NEXRAD and WSR inputs. For 3-parameter
models, the “leaders of the pack” involve either Top
(1), SumAvg or Avg. Also, while SumAvg (thresh-
olded) alone is near the “top of the pack”, the best
3-parameter linear model (Avg, Top, Base) yields
a .07 FAR gain over SumAvg alone; non-trivial (a
20% relative gain).

Figure 4 also reveals an interesting feature of the
univariate models. First, thresholding appears to
make little difference; not surprising given the low
sensitivity of the NEXRAD radar itself. Second,
while the Avg parameter yields good performance
for POD >~ 0.98, it is by no means the most robust
model for POD <~ 0.98; rather, ACIntSum appears
superior (SumAvg actually does best). Recalling the
earlier observations about overall model behavior
near POD ~ 1, this should caution us that Avg may
“only” be working there because it happens to
accommodate marginal or anomalous data well (and
indeed may do this at a cost of lower overall robust-
ness). However, when “corrected” (for whatever
reason) using information about cloud base and top,
this deficiency is removed. Interestingly, in this
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Figure 4: ROC curves (POD vs FAR as a function of decision threshold) for the “best” models
trained on NEXRAD data with an E > 4 kV/m hazard threshold. Inset numbers show FAR @ POD =
0.990 (dashed line). The full ensemble of model runs is shown in Table 1.
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1.000
0.469
0.546
0.586
0.753
0.508
0.524
0.499
0.664
0.597
0.517
0.489
0.671
0.551
0.507
0.498
0.498
0.551
0.574
0.661
0.678
0.569
0.510
0.556
0.592
0.653
0.517
0.649
0.575
0.672
0.678
0.541
0.709
0.688
0.781
0.756
0.780
0.678
0.844
0.698
1.000
0.777
0.886
0.865
0.664
0.748
1.000
1.000
0.701
1.000
1.000
1.000
1.000
0.872
0.901
0.810
0.906
1.000
1.000
0.884
1.000
0.983
1.000
1.000
1.000
0.987
1.000
1.000
1.000

FAR @

0.212

0.176
0.216

0.237

0.296
0.314
0.372
0.397
0.387
0.356
0.478
0.408
0.478
0.389
0.388
0.431
0.400
0.481
0.441
0.428
0.431
0.443
0.425
0.418
0.509
0.395
0.398
0.415
0.458
0.431
0.434
0.484
0.467
0.529
0.519
0.427
0.463
0.434
0.454
0.457
0.495
0.440
0.463
0.468
0.423
0.436
0.517
0.440
0.474
0.446
0.507
0.478
0.478
0.466
0.471
0.661
0.650
0.507
0.510
0.556
0.513
0.514
0.517
0.517
0.575
0.524
0.537
0.541
0.709
0.599
0.659
0.756
0.780
0.678
0.844
0.698
1.000
0.657
0.658
0.791
0.664
0.748
0.700
0.700
0.701
0.704
0.716
0.719
1.000
0.872
0.809
0.810
0.819
1.000
0.836
0.884
1.000
0.979
1.000
1.000
1.000
0.983
1.000
1.000
1.000

FAR @
POD=0.995 POD=0.990

0.156

0.146
0.186

0.213

0.276
0.303
0.335
0.343
0.344
0.356
0.364
0.364
0.365
0.366
0.369
0.370
0.372
0.373
0.376
0.378
0.380
0.380
0.381
0.382
0.382
0.384
0.385
0.387
0.388
0.390
0.390
0.394
0.395
0.398
0.399
0.401
0.402
0.403
0.411
0.412
0.414
0.419
0.419
0.422
0.423
0.436
0.439
0.440
0.442
0.446
0.452
0.459
0.459
0.466
0.471
0.491
0.503
0.507
0.510
0.511
0.513
0.514
0.517
0.517
0.518
0.524
0.537
0.541
0.594
0.599
0.604
0.616
0.630
0.639
0.644
0.646
0.657
0.657
0.658
0.661
0.664
0.672
0.700
0.700
0.701
0.704
0.716
0.719
0.728
0.765
0.809
0.810
0.819
0.824
0.836
0.884
0.887
0.968
0.926
0.931
0.931
0.970
1.000
1.000
1.000

MeanFAR

0.258

0.252
0.321

0.295

0.366
0.392
0.359
0.416
0.390
0.389
0.482
0.409
0.485
0.418
0.411
0.448
0.442
0.445
0.458
0.440
0.414
0.447
0.455
0.461
0.630
0.439
0.430
0.463
0.468
0.438
0.458
0.490
0.450
0.485
0.511
0.460
0.622
0.436
0.470
0.485
0.554
0.456
0.469
0.463
0.503
0.490
0.491
0.456
0.529
0.481
0.488
0.478
0.478
0.494
0.506
0.604
0.610
0.527
0.510
0.541
0.539
0.560
0.517
0.561
0.556
0.573
0.584
0.541
0.671
0.629
0.681
0.709
0.730
0.665
0.777
0.681
0.886
0.697
0.734
0.772
0.664
0.723
0.800
0.800
0.701
0.803
0.810
0.812
0.909
0.836
0.840
0.810
0.848
0.941
0.891
0.884
0.962
0.977
0.975
0.977
0.977
0.980
1.000
1.000
1.000

0-1 1-2 2-5 5-10 10-20 20-40 40-60 60-80 80-90 90-100

ColSum1 Thick Top Base Avg Frac SumAva ACInt TotSum

|
I

Table 2
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case, “correction” of ACIntSum in a 3-parameter
model does not yield optimum performance.

Unlike with WSR data, a 9-parameter linear model
yields a significant gain over 3-parameter models,
reducing FAR @ POD = 0.990 to 0.186 (a 0.09 or
33% gain over 3-parameter models, and a 0.16 or
46% gain over univariate models). NEXRAD
inputs, although poor quality individually, appear to
have enough information content collectively to
yield good performance.

5. PRELIMINARY CONCLUSIONS

» For WSR data, unthresholded inputs yield over-
all poorer performance than thresholded inputs
(for very plausible reasons). For NEXRAD
data, thresholding appears much less relevant
(for very plausible reasons). Attention should
be given to fixing the “significant missing
data” problem in important WSR thresholded
inputs.

e While not shown, an E > 4 kV/m hazard crite-
rion yields higher performance than an E > 3
kV/m criterion. = The committee should
consider whether such a hazard criterion is
acceptable.

* The fact that many models’ performance “falls
apart” for POD >~ 0.98 suggests the presence
of a small subset of marginal cases or noisy
cases in the training dataset.  This subset
should be fairly easy to isolate and examine in
greater depth to determine how important it is.
Regardless, strong arguments (pixel detection
vs feature detection) can be made to guide
model selection by FAR at POD slightly below
a strict 1.0 requirement.

* “Simple”, 3-parameter linear models (discrim-
inant analysis) outperforms univariate threshold
rules with a 0.05-0.07 FAR reduction at
POD=0.990 (a 14-%-19% relative gain).
Given the costs of overwarning, these gains are
nontrivial.

» For WSR data, the complaints about ACIntSum
sensitivity to scan gaps can be mitigated by
“correcting” for sampling in a 2- or 3-parame-
ter model with Frac, yielding a final model
superior to a univariate rule.

* For univariate models, O-thresholded Avg
performs best for WSR data (ACIntSum does

well, but really needs a quality “correction” to
shine). O-thresholded SumAvg works best with
NEXRAD data. 0O-thresholded Avg appears to
do well for NEXRAD data, but only for very
high POD, and is thus suspect. Over a broader
performance range, SumAvg and ACIntSum
fare much better (despite the latter appearing to
do very badly at POD=1).

 The benefits of multiparameter linear models
are nontrivial, especially for NEXRAD data.
Since discriminant analysis is relatively simple
to code, and since many of the inputs are
already routinely available, serious considera-
tion should be given to multivariate linear
models in general.

* The benefits of multiparameter nonlinear
models (neural networks) may be significant
(pending proper testing against overfitting).

* Given the prevalence of multiparameter rule-
based / decision tree models in other
weather-related LCC, it may be worth invest-
ing some effort into coding “generalized”
discriminant analysis or neural network func-
tionality into whatever operational decision
support system is in place at KSC.

* As Monte has pointed out: Regardless of
model selection, these are all really good ROC
curves. For the vast majority of cases, models
can be constructed from radar observations
alone which rarely predict significant E-fields
when none are indeed present. (The issue of
whether instantaneous, in-situ ice mass is
causative for those fields is of course separate
from whether or not it can be a good predictor,
implicitly capturing the time history of the
anvil’s development and decay).

APPENDIX: SOME OBSERVATIONS ON RULE-
BASED MODELS (OR, “WHILE I HAVE YOR
EAR, I’LL GO OUT ON A LIMB...””)

Almost all of the weather-related LCC currently live
in “Lego world” in the sand-and-rocks allegory; i.e.,
multivariate, logical threshold rule-based decision
trees.  Recall that this is simply one way to
discretely parameterize a smooth/continuous deci-
sion surface, which happens to project well onto a
FORTRAN:-ish operational implementation (either
manual or algorithmic). As a useful exercise, run
through the weather LCC with a yellow highlighter
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and mark off all quantities which count as “inputs”
(these could be spatial variates, temporal variates,
quality variates, or quantitative direct observations).
It is immediately obvious that this is a “Lego
world” in a room with far more than 3 dimensions,
and we should have very little confidence that the
Lego boundary is anything like an optimalparame-
terization of the true decision surface in the various
hypercubes. Finally, recall that this is a high-
impact issue; we’re balancing two of the most
important drivers possible, safety and cost, so “opti-
mization” is not just a technical nicety here. Asa
final note, I seem to recall that significant energy in
the past has gone into decisions about altering the
decision thresholds (e.g., sliding a wall in Lego
world by a little bit), while very little attention has
gone into the much more basic issue of how the
decision surface itself has been parameterized
(‘Lego world is the only world we shall consider’).
This expenditure of energy strikes me as ... dispro-
portionate ... within the context of overall
“optimization”.

Having said that, entrenched reasons exist for rule-
based models. Here are a few:

* “Its what we’ve always done.” Fair enough,
leveraging prior investment is important. “If
it ain’t broke, don’t fix it.” The problem here
is that we don’t know if it’s broke; we haven’t
explored models other than Lego world. As
has been pointed out, it’s largely “what we’ve
always done” because up til now, we haven’t
actually had training datasets to work with, only
expert opinion (for which rule-based models are
perfectly legitimate tools). This is thus both a
data collection and experiment design issue.

* “Its easy.” Time and money constraints are
legitimate. However, I again note that this is a
very high impact problem. Also, in a Lego
world with many, many dimensions, it is most
definitely not easy. It’s easy to read, is all (and
arguably not even that). This is a human
resources issue; a bigger toolbox increases the
likelihood of better solutions.

» “Its procedural.” Follow a checklist. This
argument seems to have legs, and not knowing
how actual launch operations proceed, may be
quite valid. On the other hand, I don’t see how
“Thou shalt not launch if X and Y (in the case

of Z) or A or B (in the case of C) is any more
or less procedural than “Thou shalt not launch
if the hazard probability is greater than 10% and
the likelihood of error is less than 5%.” A solu-
tion can be procedural without exposing the
inner details of the model to those in charge of
implementation. This is a cultural, techincal
and cognitive issue.

* “Its safe.” (The biggest box in Lego world
yields the safest conclusions.) This is simply
an end-run around the optimization problem, in
which technical experts decree that cost is
never an issue. If the multivariate inputs can
support equivalent safety (POD) with lower cost
(FAR) using a model other than Lego world, we
have failed in the optimization task. This is a
management (or failure to manage) issue.

» “Its easy to fix.” This one gets used a lot ...
we “understand’” how rule-based models work.
If something goes wrong, move a wall of the
box. The problem is that this is just a round-
about way of saying that the model was the
wrong design choice from the start. If we had
made the “best” fit to available data, nothing
could “go wrong” except insufficient data or the
management decision itself in balancing detec-
tion vs acceptable false alarms, in selection of
a decision threshold. And again, in a Lego
world with many dimensions, I’ll further argue
that we “understand” the rule based models far
less than we think we do.

It should be pretty obvious that I'm not a huge fan
of decision tree models, especially in cases where
we already have available a significant number of
input variates and good-sized training datasets to
work with. If or when additional LCC components
come up for review, I’ll suggest that it may be
constructive to keep these issues in mind.
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