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1 Box size — How much is enough?

Question: How much cloud (horizontally) do you have to include to capture
“most” of the variability in E?

Based on balloon soundings, the charges inside a typical thunderstorm are
arranged in 500m- to 1 km-thick layers. We have gridded the radar data into
1 km cubes. Because E obeys superposition, we can do the same for charge.
Assume that each 1 km radar box contains a 1 km spherical charge. The airplane
is flying through at point “×” .
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The field at the surface of a sphere is E = Q/4πεor
2, where r is measured from

the center of the sphere. Call this E0. That is the contribution to E from sphere
3 at point ×.

• The centers of spheres 2 & 4 are 2 radii from the center of sphere 3, so
the distance to point × is r

√
22 + 12 = r

√
5, so each contributes E =

Q/4πεo(r
√

5)2 = E0/5, and their total contribution is (2/5)E0, or 40%.

• For spheres 1 & 5, the contribution is (2/17)E0 or 12%.

• For spheres 0 & 6 (not shown), the contribution is (2/37)E0 or 5%.

Thus it seems if we include cloud more than 3 boxes away from the aircraft in our
radar algorithm, we are including cloud that contributes < 5% to E. However,
between the aircraft and radar, we may have 1–2km difference in geolocation.
So we have to include another 1–2 boxes, giving us a domain size of 4–5 boxes
on either side of the aircraft. This argues in favor of a 9× 9 or 11× 11 box size,
and it argues against the 21× 21 box size.

1.1 But how much is too much?

Let’s try to do the same calculation in a continuous model, without discretizing
the charge into spheres. The easiest geometry is to calculate E above a disc.
Skipping details here, the field a distance z above a disc of radius R is
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E =
σ

2εo

(

1 − z√
z2 + R2

)

= E0

(

1 − z√
z2 + R2

)

,

where this time E0 = σ/2εo, the field from an infinite flat plate.

Keeping z fixed and letting R grow, here are some plots of E(R) for various
values of z:
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So how does our previous calculation compare? Realize that the first calculation
was one dimensional, i.e., for a line of charges. This calculation is 2-D. Look
at the graph for R = 5 km. For the 2 smaller values of z, we have captured
≥ 0.95E0 by R = 5km. For the 2 large values of z, we have captured 90% and
80% of E0.

But is that “good enough”? If we increase R to 10 km, the above fractions
increase to 95% and 90%, i.e., an increase of 5% and 10%, respectively. To
obtain these slight gains, we have had to increase our domain area by a factor
of 4 — or by 300%.

Again, R = 5 km (11×11) seems to be a very reasonable upper limit on box
size.
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2 To Average or not to Average. . . ?

The problem with averaging is that it throws away depth information. For
example:
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Both of these average to 30 dBZ. But the deeper cloud is much more likely to
be electrified. Thus, averaging is a bad idea.

3 Conclusion

Because of the above-mentioned reasons, a box size of 11 × 11 seems to be the
largest reasonable size, and smaller might well work better. The problem with
using too large a box is that one may be including cloud that is too far away to
be relevant to E.

Also, for reasons given above, a column sum is a better indicator of clouds
that are likely to electrify. Our analysis showed that using a column sum pro-
duced a better correlation between radar reflectivity and measured E. Indeed,
the animations generated show a very nice correlation between |E| and the 1×1
column sum of reflectivity. This is what we have previously called “integrated
reflectivity above 0◦C.”

In summation, we are in favor of smaller box sizes and definitely against
averging. Further, it is essential that we use a column sum algorithm as our
proxy.
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